Типовые нарушения и ошибки при эксплуатации и обслуживании чиллеров (водоохладителей)

Рассмотрим типовые и наиболее распространенные ошибки и нарушения при эксплуатации и обслуживании чиллеров. Как их предотвратить и не потерять на ремонте или замене чиллера.

К каждому промышленному чиллеру в комплекте в обязательном порядке прилагаются «Руководство по эксплуатации» и «Паспорт», в соответствии с которыми необходимо производить подключение к электропитанию, подключение труб, по которым хладоноситель будет поступать к потребителю и обратно, а также пуск чиллера и его дальнейшую эксплуатацию. Также, в документации описаны пункты необходимого и допустимого технического обслуживания, условия их проведения и их последовательность. Однако, несмотря на то, что российский производитель чиллеров прилагает к своему оборудованию технические документы на русском языке, некоторые работники, которые должны эксплуатировать и следить за промышленными водоохладителями на предприятиях, не всегда внимательно ознакамливаются с прилагаемой документацией или же не открывают инструкцию вовсе. 

Следствием этого является неправильная эксплуатация и обслуживание водоохладителей. Это приводит к тому, что промышленные чиллеры зачастую выходят из строя. Иногда такая поломка оказывается фатальной для ключевых комплектующих установки, а ремонт промышленного водоохладителя составляет большую часть стоимости оборудования. Кроме того, предприятие может потерять прибыль из-за остановки производственного процесса на время ремонта или закупки нового холодильного оборудования.

Ниже перечислены наиболее частые нарушения, допускаемые при эксплуатации и обслуживании промышленных чиллеров (промышленных водоохладителей). 

Данные собраны на основе многолетнего опыта наших специалистов по ремонту вышедших из строя чиллеров, при их неправильном обслуживании и эксплуатации, как произведенных зарубежными компаниями, так и российскими производителями чиллеров.

Типовые ошибки и нарушения при неправильной эксплуатации и обслуживании чиллеров

1. Установка на температурном контроллере рабочей точки ниже рекомендуемой Руководством по эксплутации

Как правило, при заводской настройке устанавливается ограничение, ниже или выше которого невозможно понизить или повысить рабочую точку.

Однако, большинство контроллеров имеют подробную документацию в открытом доступе в интернете. И, когда возникает производственная необходимость понизить температуру хладоносителя ниже допустимой для данной модели чиллера, типовой ошибкой работников производств является самостоятельное перепрограммирование процессора и установка недопустимого значения рабочей точки.  В результате, вода в пластинчатом испарителе постепенно намерзает (по принципу лавины или снежного кома) и тонкие пластины теплообменника разрывает, хладоноситель попадает во фреоновый контур. В итоге, чиллер требует капитального ремонта или вовсе не подлежит восстановлению.

При том, если теплообменник трубного типа, то намерзший лед очень быстро сводит на нет процесс теплообмена и промышленный водоохладитель работает не энергоэффективно.  

Еще существует распространенный вариант ошибки, когда вместо воды, в качестве хладоносителя, заливают раствор гликоля. При этом, риск замерзания воды отсутствует, но торцевые уплотнения на насосах чиллера могут быть рассчитаны для работы только на чистой пресной воде. Для работы на растворе гликоля нужны насосы со специальными торцевыми уплотнениями. В результате, стандартные уплотнения начинают течь — и насосы требуют ремонта или замены.

Для предотвращения необходимости «оптимизировать» работу чиллера самостоятельно, силами технологов производств, необходимо, при составлении технического задания, указывать Продавцу все возможные режимы работы и желаемые условия эксплуатации. Таким образом, еще при расчете промышленного чиллера, инженером-конструктором будут учтены все эти требования.

2. Перенастройка аварийного реле низкого давления

Необходимость перенастройки реле, как правило, может возникнуть при утечке фреона, вызванной чаще всего каким-то механическим повреждением во фреоновом контуре водоохладителя. После чего срабатывает «авария низкого давления». Если, в этот момент производственный процесс, как считает технолог, никак нельзя останавливать, то холодильщики-самоучки, как правило из тех, кого удалось застать поблизости, производят следующее грубое нарушение  просто меняют настройку аварийного реле давления на более низкую и авария низкого давления не срабатывает. В результате, давление и температура кипения опускается до недопустимой для охлаждения воды. Далее сценарий развивается как в предыдущем пункте — вода в пластинчатом испарителе постепенно намерзает (по принципу снежного кома), пластины теплообменника разрывает, вода попадает во фреоновый контур, чиллеру необходим капитальный ремонт или утилизация.

3. Перенастройка аварийного реле высокого давления

Рассмотрим ситуацию, когда один или часть вентиляторов (в зависимости от мощности и конфигурации воздушного конденсатора) выходят из строя по причине примерзания лопастей, перегрева, сгорании обмоток или по иной другой причине. Давление и температура во фреоновом контуре быстро растет и чиллер останавливается по «аварии высокого давления». Эксплуатационщик делает следующую ошибку: меняет установку аварийного высокого давления на максимально возможную (чаще всего около 40 бар), при том, что чиллер рассчитан на максимальное давление 25 бар, давление опресовки холодильного контура  25-30 бар. В результате, превышение данного давления влечет повреждение одного из элементов фреонового контура.

Также нередко случается, что реле давления просто выводят из цепи защиты, путем перемыкания соответствующих управляющих контактов. В результате, следствием становится разрыв контура, при достаточной мощности компрессора. Так как далеко не на всех холодильных установках присутствует в комплектации предохранительный клапан на ресивере.

Последствия могут быть самыми различными, в зависимости от места разрыва, от утечки фреона, вплоть до попадания хладоносителя во фреоновый контур, со всеми вытекающими вышеизложенными последствиями.

4. Демонтаж сеточки тонкой очистки из фильтра, расположенного перед пластинчатым теплообменником

При использовании сильно загрязненного хладоносителя, в условиях отсутствия дополнительной системы очистки, фильтр, встроенный в промышленный водоохладитель, быстро забивается и чиллер останавливается по «аварии отсутствия протока» или «аварии низкого давления фреона».

В руководстве, как правило, указывается, что встроенный в чиллер фильтр тонкой очитки  не является системой фильтрации хладоносителя, как таковой, но крайней степенью защиты теплообменника от случайно попавшей в систему мелкодисперсной грязи. Фильтр тонкой очитки требует регулярного контроля за его чистотой.

Работник предприятия, естественно не желает постоянно останавливать производственный цикл из-за часто забивающегося фильтра для его прочистки. Такой человек, естественно не читавший «Руководства», принимает, по его мнению, «гениальное решение»: не ставить систему внешней фильтрации хладоносителя, а попросту удалить из фильтра чиллера надоевшую, часто забивающуюся сеточку тонкой очистки. Не трудно догадаться, что за этим следует. В результате, теплообменник забивается грязью, давление понижается, срабатывает «остановка по аварии протока», либо «остановка по аварии низкого давления», а далее возможен сценарий, описанный выше в пункте 2.

5. Включение подающего насоса с одновременным перекрытием подающего патрубка

Включение подающего насоса с одновременным перекрытием подающего патрубка  бывает в тех случаях, когда промышленный чиллер расположен вдали от технологического оборудования (вдали понятие относительное для каждого работника), для которого чиллер предназначен охлаждать жидкость и отсутствует централизованный пункт управления (ЦПУ), из которого происходило бы управление всем производственным циклом, включая чиллер.

Рассмотрим ситуацию, когда производственный процесс требует временного прекращения подачи хладоносителя от чиллера к техническому оборудованию. В этот момент эксплуатационщик или работник, ответственный за работу чиллера, не идет выключать насос к охладителю, как это должно быть по инструкции, а решает сделать проще перекрывает подачу жидкости к оборудованию. Если это происходит на долго или вовсе забывают о перекрытом нагнетательном патрубке подающего насоса (что происходит чаще всего), то, в рузльтате, насос перегревается и сгорает, при отсутствии встроенной тепловой защиты насоса.  

На многих промышленных чиллерах российского производства, в силу менталитета российского эксплуатационщика, стали устанавливать автоматические байпасные редукторы перепуска воды обратно в буферную емкость, служащие для снятия избыточного давления. Редуктор срабатывает на заранее установленное значение, безопасное для работы конкретного насоса, установленного в чиллере.  

6. Расположение чиллера на наклонной плоскости

Чиллер необходимо устанавливать на строго горизонтальную поверхность. Небольшой наклон в сторону компрессора относительно испарителя допустим до 3 градусов .

Зачастую фундамент под установленны чилером отсутствует. Охладитель ставят на неровную плоскость, с % наклоном от компрессора в сторону испарителя тем самым препятствуя возврату компрессорного масла обратно в компрессор. В результате, терморегулирующий вентиль (ТРВ или ЭРВ) и испаритель заливаются маслом, ухудшаются процессы дросселирования в ТРВ и теплообмена в испарителе. Если емкость испарителя большая, то охлаждение может быть не энергоэффективно. Отток с фреоно–масляной смесью из компрессора всего масла является критичным и его выход из строя лишь вопрос времени.

7. Остановка циркуляционного насоса (обеспечивающего циркуляцию хладоносителя через испаритель) сразу после остановки процесса охлаждения

При остановке процесса охлаждения, циркуляционный насос должен продолжать работу еще некоторое время, в зависимости от мощности чиллера, емкости испарителя и объемного расхода насоса, чаще всего это время составляет 1-2 минуты.

Однако, не всем хватает терпения! И, эксплуатационщик совершает следующую ошибку: единовременно выключает насос и холодильный компрессор. В результате, остатки фреона продолжают выкипать в испарителе, при отсутствии протока охлаждаемой жидкости. Как следствие, намерзает вода и пластины испарителя лопаются.

Для предотвращения ситуации с подобной поломкой, существуют специальные контроллеры для чиллеров, с задержкой остановки циркуляционного насоса после остановки холодильного компрессора.

Или же, при использовании обычного температурного контролера, устанавливают реле времени с обратным отсчетом для задержки выключения насоса.

Однако, далеко не все чиллеры имеют описанные выше степени защиты. Поэтому, следует выключать компрессор, приэтом, насос следует выключать через промежуток времени, указанный в «Руководстве по эксплуатации» чиллера, как правило, это небольшая пауза.

Итак, учитывая многочисленые распространненные ошибки и нарушения при эксплуатировании и обслуживании промышленных водоохладителей чиллеров, напрашивается резонный вывод, что фактически никто и никогда не открывает и не читает «Руководство по эксплуатации», которое входит в комплект поставки. И, пока сотрудники предприятий в силу лени, в силу экономии рабочего времени или полагаясь на свои самостоятельные знания, не открывают инструкций, где в том числе прописаны экстренные варианты в работе оборудрвания и их решения предприятие расплачивается за ошибки своих рабочих, вынуждено приобретать новое оборудование или чинить за свой счет, производить замену коплектующих, при этом еще и упускать прибыль из-за прерывания производственного цикла.